

SBC-MOTODRIVER3

Placa de acionamento do motor para motores DC e de passo

Joy-IT powered by SIMAC Electronics GmbH - Pascalstr. 8 - 47506 Neukirchen-Vluyn - www.joy-it.net

Atenção! Este manual foi traduzido automaticamente, em caso de dúvida, consulte o manual em inglês ou contacte o nosso serviço de apoio ao cliente.

Todos os pedidos de apoio devem ser efectuados em alemão ou inglês.

ÍNDICE DE CONTEÚDOS

- 1. Informações gerais
- 2. Alteração do endereço I²C
- 3. Atribuíção de pinos
- 4. Utilizar com o Raspberry Pi
 - 4.1 Ligação
 - 4.2 Instalação
 - 4.3 Utilização de motores passo a passo

Estas instruções foram desenvolvidas e testadas para o Raspberry Pi 5 e o sistema operativo Bookworm OS. Não foram testadas com sistemas operativos ou hardware mais recentes.

5. Utilizar com o Raspberry Pi Pico

- 5.1 Ligação
- 5.2 Instalação
- 5.3 Exemplo de código
- 5.4 Utilização de motores passo a passo
- 6. Utilizar com o ARD-ONE-C (Compatível com Ardui-
- no)

- 6.1 Ligação
- 6.2 Instalação
- 6.3 Exemplo de código
- 6.4 Utilização de motores passo a passo
- 7. Utilizar com o micro:bit
 - 7.1 Ligação
 - 7.2 Instalação
 - 7.3 Exemplo de código
 - 7.4 Utilização de motores passo a passo
 - 7.5 Emparelhar o micro:bit
- 8. Outras informações
- 9. Apoio

1. INFORMAÇÕES GERAIS

Caro cliente,

Obrigado por ter escolhido o nosso produto. A seguir, mostramos-lhe o que deve ter em conta durante a colocação em funcionamento e a utilização.

Caso surja algum problema inesperado durante a utilização, não hesite em contactar-nos.

Com o MotoDriver3 tem a opção de controlar e fornecer energia a até quatro motores DC ou dois motores de passo. Os motores ligados são controlados através do chip PCA9634, que fornece uma interface I2C.

2. ALTERAÇÃO DO ENDEREÇO I2C

Esta placa de acionamento do motor pode ser configurada para 128 endereços I2C possíveis. Estes podem ser seleccionados livremente, mas no curso seguinte é utilizado o endereço predefinido 0x15.

Na ilustração seguinte, pode ver quais as resistências que podem ser alteradas para mudar o endereço I2C da placa de acionamento do motor. Pode voltar a soldar estas resistências de A1 até A7 entre GND e VDD para obter diferentes endereços I2C.

Aqui, as posições das sete resistências podem ser traduzidas para um valor binário de 7 bits. Aqui tomamos o endereço padrão da placa de controlo do motor **0x15** que pode ser traduzido para **001 0101b**:

*A*1 = 1 | *A*2 = 0 | *A*3 = 1 | *A*4 = 0 | *A*5 = 1 | *A*6 = 0 | *A*7 = 0

Deve ter-se em atenção que nunca se deve alterar o endereço I2C durante o funcionamento, uma vez que isso pode levar a problemas imprevisíveis.

Nesta secção, explicamos brevemente as funções dos pinos individuais.

- 1. SCL & SDA: Interface I2C. Pinos para comunicação com o IC do condutor.
- 2. **nFalha1 & nFalha2: Pinos de estado dos accionadores do motor.** Emite um sinal lógico LOW se os accionadores do motor sobreaquecerem ou estiverem carregados com demasiada corrente, por exemplo.
- 3. **OE: Ativa a saída do CI do controlador.** Quando o pino é puxado para um sinal lógico BAIXO, a saída do IC do condutor é activada.
- 4. VDD: Saída de tensão do conversor de tensão. Este pino indica a tensão de saída do conversor de tensão integrado na placa. Aqui pode escolher entre 2 tensões através de um jumper na placa. 5V e 3.3V podem ser seleccionados aqui.
- 5. **GND: Ligação à terra.**
- 6. **nSLEEP1 & nSLEEP2: Ativa a saída dos controladores do motor.** Quando estes pinos são puxados para um sinal lógico ALTO, as saídas dos controladores do motor são activadas e quando os pinos são puxados para um sinal lógico BAIXO, os controladores do motor entram no modo de suspensão de baixo consumo.
- VM: Saída da tensão do motor. Este pino produz a tensão da entrada CC, que é utilizada para acionar os motores, como uma tensão utilizável.

Esta placa de acionamento do motor tem 5 terminais de parafuso.

Quatro deles têm a serigrafia "Motor 1.1 | Motor 1.2 | Motor 2.1 e Motor 2.2". Estes são os terminais para os motores. Aqui podem ser ligados 2 motores de passo ou 4 motores DC. O último terminal é a entrada de tensão para os controladores de motor e o transformador de tensão.

É importante não ultrapassar a tensão máxima permitida da placa de acionamento do motor e selecionar os motores em conformidade, caso contrário a placa de acionamento do motor pode ser danificada. Ligue os cabos das bobinas dos seus motores de passo à placa de

controlo do motor, como indicado acima, para poder utilizá-los sem problemas.

O terminal "Motor 1.1" terá mais tarde o pino 0 e o pino 1 no software. O terminal "Motor 1.2" terá mais tarde o pino 2 e o pino 3 no software. O terminal "Motor 2.1" terá mais tarde o pino 4 e o pino 5 no software. O terminal "Motor 2.2" terá mais tarde o pino 6 e o pino 7 no software.

4. UTILIZAR COM O RASPBERRY PI

4.1 Ligação

Raspberry Pi	SBC-MotoDriver3	Externo
SDA (Pin 3)	SDA	-
SCL (Pin 5)	SCL	-
-	nFault1	-
-	nFault2	-
GPIO 17 (Pin 11)	OE	-
-	VDD	-
GND (Pin 6)	GND	-
-	nSLEEP1	-
-	nSLEEP2	-
-	VM/DC in	A fonte de tensão externa deve ser alinhada de acordo com as especifi- cações dos motores

Tenha em atenção que não pode ligar o VDD ao seu Raspberry Pi porque o conversor de tensão na placa só pode fornecer 1 ampere e o Raspberry Pi pode necessitar de mais de 1 ampere sob carga. Para evitar danificar os circuitos integrados do conversor de tensão e, consequentemente, toda a placa, aconselhamos a não ligar o VDD ao Raspberry Pi.

<u>4.2 Instalação</u>

Em primeiro lugar, é necessário ativar o I2C no seu Raspberry Pi. Para abrir a configuração, introduza o seguinte comando:

sudo raspi-config

Aí, selecionar **3** Opções de interface → P5 I2C.

R 1 Sys 2 Dis 6 Adv 8 Upd 8 Upd 9 Abo	aspberry P1 Softwa tem Options play Options erface Options formance Options alisation Options anced Options ate ut raspi-config	re Configuration Tool (raspi-config) Configure display settings Configure display settings Configure connectans to peripherals Configure language and regional setting Configure language and regional setting Update this tool to the latest version Information about this configuration to	95 201
	<select></select>	<finish></finish>	
P1 Camera P2 SSH P3 VNC P4 SPI P5 12C P6 Serial P7 1-Vire P8 Remote	spberry Pl Softwar Enable/disat Enable/disat Enable/disat Enable/disat Port Enable/disat GPIO Enable/disat	re Configuration Tool (raspi-config) ble connection to the Raspberry Pi Cam ble remote command line access using S ble graphical remote access using Real ble automatic loading of SPI kernel mo ble shell messages on the serial conne ble one-wire interface ble remote access to GPIO pins	era SH VMC dule dule ction
	<select></select>	<back></back>	

Aí ser-lhe-á colocada a questão **Deseja que a interface ARM I2C seja** activada? Confirme com **Sim**.

Would you li	ke the ARM I2C i	nterface to be enabled	?
	eves.		
		~~~~	



"A ativação do I2C foi bem sucedida. A placa de controlo do motor está agora acessível no endereço I2C predefinido **0x15**. Note que o endereço I2C pode ser diferente se já o tiver ajustado antes de configurar o seu Raspberry Pi."

Agora, para encontrar a sua placa de driver de motor, precisa de descarregar e instalar o **i2c-tools** no seu Raspberry Pi. Pode fazer isso com o seguinte comando.

#### sudo apt-get install i2c-tools

Depois de descarregar e instalar o i2c-tools, pode agora aceder ao i2c através de

i2cdetect -y 1

Encontre a placa de controlo do motor. Se o fizer, deverá ver **0x15** e **0x70** como endereços I2C.

Note que 0x70 é um endereço I2C interno do PCA9634 e não deve ser utilizado exceto se necessário. Este endereço actua como um reset de hardware do PCA9634. Em seguida, é necessário descarregar as bibliotecas adicionais necessárias, para o que é necessário executar os seguintes comandos.

sudo apt install -y python3-dev python3-pip
sudo apt install -y git

De seguida, é necessário reiniciar a Raspberry Pi. Para reiniciar a Raspberry Pi, basta executar o seguinte comando.

#### sudo reboot now

Para o nosso exemplo de código, usamos a biblioteca <u>SBC-MotoDriver3-</u> <u>RaspberryPi</u> da <u>Joy-IT</u>, que foi publicada sob a <u>licença GNU</u> e já contém um exemplo de código. Use o seguinte comando para baixar essa biblioteca do GitHub. Em alternativa, pode descarregar apenas o exemplo de código <u>aqui</u>.

#### git clone https://github.com/joy-it/SBC-MotoDriver3-RaspberryPi.git

Depois de ter descarregado a biblioteca, deve agora executar o seguinte comando para poder utilizar o exemplo da biblioteca da placa do controlador do motor.

cd SBC-MotoDriver3-RaspberryPi
python3 SBC-MotoDriver3-Example.py

#### <u>4.3 Utilização de motores passo a passo</u>

Tenha em atenção que só pode ser ligado um motor de passo por lado de cada vez. Em termos de hardware, é importante utilizar os motores de passo adequados para a gama de tensões permitida. Além disso, independentemente da plataforma em que pretende utilizar o produto, deve certificar-se de que nunca liga um motor de passo e um motor de corrente contínua ao mesmo lado, em simultâneo. Isto pode causar problemas ou mesmo danificar o produto.

Em termos de software, certifique-se de que não envia a função de motor de passo para o mesmo controlador de motor com as funções de motor CC, independentemente da plataforma em que pretende utilizar o produto. Mantenha sempre estas funções separadas umas das outras.

# <u>5.1 Ligação</u>



Raspberry Pi Pico	SBC-MotoDriver3	Externo
Pin 0	SDA	-
Pin 1	SCL	-
-	nFault1	-
-	nFault2	-
Pin 16	OE	-
3V3	VDD	-
GND	GND	-
-	nSLEEP1	-
-	nSLEEP2	-
-	VM/DC in	A fonte de tensão externa deve ser alinhada de acordo com as especifi- cações dos motores

Tenha em atenção que, ao ligar o VDD ao Raspberry Pi Pico, tem de definir a tensão de saída do conversor de tensão na placa para 3,3 V com o jumper para poder alimentar o Pico através da placa de controlo do motor.

# <u>5.2 Instalação</u>

Para usar esta biblioteca no seu Raspberry Pi Pico, recomendamos que descarregue o <u>Thonny Python IDE</u>.

Depois de ter descarregado o Thonny IDE, pode agora descarregar a versão mais recente do <u>Micropython</u> e instalá-la no seu Pico.

Depois de ter descarregado a versão mais recente do Micropython, pode agora ligá-lo ao seu Pico, mantendo premido o botão BOOTSEL quando ligar o seu Pico ao PC. Pode então soltar o botão BOOTSEL. O Pico deve agora abrir-se no Explorer no seu monitor. Basta arrastar o ficheiro que acabaste de descarregar e o teu Pico será atualizado com a última versão do Micropython.

#### 5.3 Exemplo de código

Em seguida, pode descarregar a biblioteca a partir do GitHub. Para o nosso exemplo de código, utilizamos a biblioteca <u>SBC-MotoDriver3-</u> <u>RaspberryPiPico</u> da <u>Joy-IT</u>, que foi lançada sob a <u>licença GNU</u>.

Depois de descarregar o ficheiro *.zip, é necessário descompactá-lo e seguir os passos abaixo para poder utilizar a biblioteca sem problemas.

- 1. Abra o Thonny IDE, vá a "View" (Ver) e active "Files" (Ficheiros).
- 2. Crie uma nova pasta no seu Pico a que chamará "lib".
- 3. Na janela **"Ficheiros"** que está agora aberta, abra a pasta onde se encontra a biblioteca descompactada do GitHub.
- Vá à pasta "lib" do seu Pico e clique com o botão direito do rato no ficheiro "SBC_MotoDriver3_Lib.py" na janela "Files" e transfira-o para a pasta "lib" do seu Pico.
- Deixe a pasta "lib" no seu Pico e descarregue o ficheiro "SBC-MotoDriver3-Example.py" na sua janela "Files". Clique com o botão direito do rato na janela "Files" do seu Pico.

Se tiver seguido estes passos, já pode utilizar diretamente o exemplo de código.

# <u>5.4 Utilização de motores passo a passo</u>

Tenha em atenção que só pode ser ligado um motor de passo por lado de cada vez. Em termos de hardware, é importante utilizar os motores de passo adequados para a gama de tensões permitida. Além disso, independentemente da plataforma em que pretende utilizar o produto, deve certificar-se de que nunca liga um motor de passo e um motor de corrente contínua ao mesmo lado, em simultâneo. Isto pode causar problemas ou mesmo danificar o produto.

Em termos de software, certifique-se de que não envia a função de motor de passo para o mesmo controlador de motor com as funções de motor CC, independentemente da plataforma em que pretende utilizar o produto. Mantenha sempre estas funções separadas umas das outras.

# <u>6.1 Ligação</u>



ARD-ONE-C	SBC-MotoDriver3	Externo
SDA (A4)	SDA	-
SCL (A5)	SCL	-
-	nFault1	-
-	nFault2	-
D4	OE	-
VIN	VDD	-
GND	GND	-
-	nSLEEP1	-
-	nSLEEP2	-
-	VM/DC in	A fonte de tensão externa deve ser alinhada de acordo com as especifi- cações dos motores

Tenha em atenção que, se ligar VDD ao seu ARD-ONE-C, deve definir a tensão de saída do conversor de tensão na placa para 5V com o jumper para poder alimentar o seu ARD-ONE-C com tensão através da placa de acionamento do motor.

# <u>6.2 Instalação</u>

Para o nosso exemplo de código, utilizamos a biblioteca <u>SBC-MotoDriver3-Arduino</u> da <u>Joy-IT</u>, que foi lançada sob a <u>licença</u> <u>GNU</u>. Para utilizar esta biblioteca, é necessário descarregá-la do GitHub. Podes instalar esta biblioteca indo a *Sketch*  $\rightarrow$  *Include Library*  $\rightarrow$  *Add .zip Library...* procure a biblioteca que você acabou de baixar e selecione-a.

#### 6.3 Exemplo de código

Para testar a sua placa de driver de motor com um exemplo de código, basta ir a *File*  $\rightarrow$  *Examples*  $\rightarrow$  *SBC-MotoDriver3-Arduino* no seu Arduino IDE *e depois a SBC-MotoDriver3 Example....*. Clique em Upload para carregar o exemplo de código para o seu Arduino. Também pode descarregar o exemplo de código <u>aqui</u>.

# 6.4 Utilização de motores passo a passo

Tenha em atenção que só pode ser ligado um motor de passo por lado de cada vez. Em termos de hardware, é importante utilizar os motores de passo adequados para a gama de tensões permitida. Além disso, independentemente da plataforma em que pretende utilizar o produto, deve certificar-se de que nunca liga um motor de passo e um motor de corrente contínua ao mesmo lado, em simultâneo. Isto pode causar problemas ou mesmo danificar o produto.

Em termos de software, certifique-se de que não envia a função de motor de passo para o mesmo controlador de motor com as funções de motor CC, independentemente da plataforma em que pretende utilizar o produto. Mantenha sempre estas funções separadas umas das outras.

# Fonte de alimentação externa

# 7. UTILIZAR COM O MICRO:BIT

7.1 Ligação

micro:bit	SBC-MotoDriver3	Externo
SDA (Pin 20)	SDA	-
SCL (Pin 19)	SCL	-
-	nFault1	-
-	nFault2	-
Pin 8	OE	-
3V	VDD	-
GND	GND	-
-	nSLEEP1	-
-	nSLEEP2	-
-	VM/DC in	A fonte de tensão externa deve ser alinhada de acordo com as especifi- cações dos motores

Tenha em atenção que quando liga o VDD ao seu micro:bit, tem de definir a tensão de saída do conversor de tensão na placa para 3,3V com o jumper para poder alimentar o seu micro:bit através da placa de controlo do motor.

Poderá ser necessário usar uma placa de circuitos para ligar cabos a alguns pinos do seu Micro:Bit. Neste exemplo, é usada uma placa de circuitos. Recomendamos a **breakout board para** Micro**:Bit da Joy-IT**.

#### 7.2 Instalação

Para o controlo, recomendamos a utilização da biblioteca <u>pxt-SBC-</u> <u>MotoDriver3</u>, que foi publicada pela <u>Joy-IT</u> sob a <u>licença GNU</u>.

Pode adicionar a biblioteca clicando em Extensões na **página Makecode** 



e, em seguida, introduzindo **https://github.com/joy-it/pxt-SBC_MotoDriver3** na barra de pesquisa. Depois de o fazer, basta clicar na extensão para a adicionar automaticamente ao seu projeto atual.

#### 7.3 Exemplo de código

Para testar a sua placa de acionamento do motor, pode descarregar um exemplo de código da nossa parte **aqui** ou simplesmente reconstruir o código como mostrado abaixo.

Se optar por descarregar o nosso exemplo de código, **depois de descompactar** o ficheiro pode simplesmente arrastar e largar o conteúdo na página web do Makecode e soltar para importar o ficheiro e abri-lo automaticamente.

Exemplo de código Micro:bit Ilustração:



#### 7.4 Utilização de motores passo a passo

Tenha em atenção que só pode ser ligado um motor de passo por lado de cada vez. Em termos de hardware, é importante utilizar os motores de passo adequados para a gama de tensões permitida. Além disso, independentemente da plataforma em que pretende utilizar o produto, deve certificar-se de que nunca liga um motor de passo e um motor de corrente contínua ao mesmo lado, em simultâneo. Isto pode causar problemas ou mesmo danificar o produto.

Em termos de software, certifique-se de que não envia a função de motor de passo para o mesmo controlador de motor com as funções de motor CC, independentemente da plataforma em que pretende utilizar o produto. Mantenha sempre estas funções separadas umas das outras.

# 7.4 Emparelhar o Micro:Bit

Clique no botão situado à direita de Upload/Download.

Hicrosoft   Omicro:bit	📩 Blocos	z	JavaSo	cript	~	6	\$	<	?	)	۵		Inicia	ır sess	io 🕝	
	Pesquisar	Q	no ari	ranque		,	oara s	empre								
	Básico															
	Entrada		+	+ •			+	÷	-							
	Música															
•Q Q•	Led															
	III Rádio															
	C Ciclos															
	🗙 Lógica															
	Variáveis															
	🖬 Matemática															
	C Extern															
Transferir	PCA9634			0								ŝ	6	•	÷	

# Clique em *Ligar dispositivo*.



# Clique em **Próximo**.

Microsoft Omicro:bit		E Blocos	JavaScript	✓	< (	8 🌣	Iniciar sessão <table-cell></table-cell>
	1. Conecte seu	Pesquisar micro:bit para o s	eeu computador		sempre		
Transferir		PCA9634	BO	o {	()· ¬		

#### Clique em **Emparelhar**.

Microsoft   🗂 micro:bit	🔹 Blocos 🛛 🖪 JavaScript 🗸 🔗	🌣 Iniciar sessão 🛞
	Pesquisar Q no arranque para sempre	· · · · · · ·
	2. Emparelha o teu micro:bit com o teu navegador  Press the Pair button below. Uma janela aparecerá na parte superior do seu navegador.  Selecione o dispositivo micro:bit e clique em Conectar.	
	C Emparelhar	
Transferir	•••• PCA9634 🖬 🖓	000

Seleccione o seu Micro:Bit na janela aberta e clique em Connect para o ligar e utilizar.



A última coisa que tem de fazer é clicar em **Finalizar** para poder carregar o seu código. Carrega o seu código clicando em Descarregar.



#### 8. OUTRAS INFORMAÇÕES

As nossas obrigações de informação e de retoma ao abrigo da lei relativa aos equipamentos eléctricos e electrónicos (ElektroG)

#### Símbolo nos equipamentos eléctricos e electrónicos:



Este caixote do lixo barrado com uma cruz significa que os equipamentos eléctricos e electrónicos não devem ser colocados no lixo doméstico. Deve entregar o equipamento usado num ponto de recolha. Antes de entregar as pilhas e acumuladores velhos que não estão incluídos no aparelho antigo, deve separá-los do mesmo.

#### **Opções de devolução:**

Como utilizador final, pode devolver o seu aparelho antigo (que desempenha essencialmente a mesma função que o novo aparelho que nos foi comprado) para eliminação sem custos aquando da compra de um novo aparelho. Os pequenos electrodomésticos sem dimensões exteriores superiores a 25 cm podem ser devolvidos em quantidades domésticas, independentemente da compra de um novo aparelho.

#### Possibilidade de devolução nas instalações da nossa empresa durante o horário de funcionamento:

SIMAC Electronics GmbH, Pascalstr. 8, D-47506 Neukirchen-Vluyn

#### Possibilidade de devolução na sua região:

Enviar-lhe-emos um selo de encomenda com o qual poderá devolver-nos o aparelho gratuitamente. Para tal, contacte-nos por correio eletrónico em Service@joy-it.net ou por telefone.

#### Informações sobre a embalagem:

Caso não disponha de material de embalagem adequado ou não pretenda utilizar o seu próprio material, contacte-nos e enviar-lhe-emos uma embalagem adequada.

#### **9. APOIO**

Também estamos ao seu dispor após a compra. Se alguma pergunta ficar por responder ou se surgirem problemas, estamos também disponíveis para o ajudar por correio eletrónico, telefone e sistema de apoio por bilhete.

Correio eletrónico: <u>service@joy-it.net</u> Sistema de bilhetes: <u>http://support.joy-it.net</u> Telefone: +49 (0)2845 9360 - 50 (Seg. - Qui.: 10:00 - 17:00, Sex.: 10:00 - 14:30)

Para mais informações, visite o nosso sítio Web: <u>www.joy-it.net</u>

Publicado: 15.05.2024

www.joy-it.net SIMAC Electronics GmbH Pascalstr. 8, 4<u>7506 Neukirchen-Vluyn</u>